top of page

It's all Grevy

Grévy’s zebras (Equus grevyi) are distinguished from the other two zebra species by their large size and elegant, slender stripes. Grévy’s are also unique among zebras for their mating system. Plains and mountain zebra stallions preside over harems of several females, and multiple harems merge into large herds that range over the land together while grazing. In contrast, Grévy’s males hold resource rich territories. Females visit male territories to access food and water, and in the process, may mate with the territorial male. Those with very young foals often take up residence in male territories that are close to water, thus in essence creating short term harem-like associations.

Grevy's Zebra (Equus grevyi) by Bernard DUPONT, [CC BY-SA 2.0], via

Grévy’s zebras are currently listed as endangered (IUCN Red List) with a global population of between 2-3000. The bulk of the population resides in central Kenya, with some small populations existing in northern Kenya and Ethiopia. Threats include competition for resources from humans and their livestock, habitat fragmentation, and increased frequency and intensity of drought due to climate change.

Today we release a genomic assembly of Grévy’s zebra (Equus grevyi). The sample for the assembly was provided by a Grevy’s zebra named Zoatira and obtained by Greg Barsh (Hudson Alpha/ Stanford University) and Ren Larison (UCLA) during a visit to the Hearts and Hands Animal Rescue in Ramona, CA, owned by animal lover and zebra whisperer Nancy Nunke. We expect this genome will be a valuable resource for research focused on the evolution and conservation of Grévy’s zebras.

This is the third zebra species we've released here on the DNA Zoo website! Please check out our chromosome length assemblies for the mountain zebra (Equus zebra) and the plains zebra (Equus quagga). Check out the 23 chromosomes of the Grévy's zebra in the interactive JuiceBox.js session below:

We gratefully acknowledge Pawsey Supercomputing Centre and DNA Zoo Australia team at the University of Western Australia for computational support of this genome assembly.

129 views0 comments

Recent Posts

See All


bottom of page