Hog deer (Axis porcinus)
The term "hog deer" is derived from this deer's habit of running through the forest with its head held low, ducking under obstacles like a wild pig, rather than leaping over them like most deer. Read more about hog deer on Animalia.

ID 53905649 Copr. Anankkml | Dreamstime.com
Chromosome-length genome assembly
Download the ASM379854v1_HiC.fasta.gz file containing the chromosome-length (2n=68) assembly of the hog deer genome. All modifications with respect to the draft (see below) are annotated in the ASM379854v1_HiC.assembly file. Some basic stats associated with the new reference, ASM379854v1_HiC, are listed below. The full data release can be explored here.
Contig length (bp) | Number of contigs | Contig N50 (bp) | Longest contig (bp) |
---|---|---|---|
2,635,793,542 | 217,354 | 67,167 | 794,078 |
Scaffold length (bp) | Number of scaffolds | Scaffold N50 (bp) | Longest scaffold (bp) |
---|---|---|---|
2,676,213,324 | 136,247 | 77,075,487 | 136,329,213 |
Draft
The chromosome-length genome assembly is based on the draft assembly ASM379854v1 (GCA_003798545.1), credited below.
Wang, Wei, Hui-Juan Yan, Shi-Yi Chen, Zhen-Zhen Li, Jun Yi, Li-Li Niu, Jia-Po Deng, et al. 2019. "The Sequence and de Novo Assembly of Hog Deer Genome." Scientific Data 6 (January): 180305. https://doi.org/10.1038/sdata.2018.305.
Method
3D Assembly was performed using 3D-DNA pipeline (Dudchenko et al., Science, 2017). The genome was reviewed using Juicebox Assembly Tools (Dudchenko et al., bioRxiv, 2018). See Methods for more information.
Hi-C sample
The blood sample for in situ Hi-C preparation was donated by a female individual, and provided to us by OKC Zoo.
Hi-C Contact maps
Hi-C data was aligned to the draft reference using Juicer (Durand, Shamim et al., Cell Systems, 2016), and contact maps visualizing the alignments with respect to the draft and the new reference were built using 3D-DNA (Dudchenko et al., Science, 2017). The contact maps can be explored below via Juicebox.js interactive tool (Robinson et al., Cell Systems, 2018). (Please note that the interactive figures are scaled 1:2.) To explore the assembly in greater detail, please download the .hic and .assembly files from the data release folder and use Juicebox Assembly Tools (Dudchenko et al., bioRxiv, 2018).
References
If you use this genome assembly in your research, please check that the conditions of use associated with the draft permit it, and acknowledge the following work.
Wang, Wei, Hui-Juan Yan, Shi-Yi Chen, Zhen-Zhen Li, Jun Yi, Li-Li Niu, Jia-Po Deng, et al. 2019. "The Sequence and de Novo Assembly of Hog Deer Genome." Scientific Data 6 (January): 180305. https://doi.org/10.1038/sdata.2018.305.
Dudchenko, O., Batra, S.S., Omer, A.D., Nyquist, S.K., Hoeger, M., Durand, N.C., Shamim, M.S., Machol, I., Lander, E.S., Aiden, A.P., Aiden, E.L., 2017. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92–95. https://doi.org/10.1126/science.aal3327.
Dudchenko, O., Shamim, M.S., Batra, S., Durand, N.C., Musial, N.T., Mostofa, R., Pham, M., Hilaire, B.G.S., Yao, W., Stamenova, E., Hoeger, M., Nyquist, S.K., Korchina, V., Pletch, K., Flanagan, J.P., Tomaszewicz, A., McAloose, D., Estrada, C.P., Novak, B.J., Omer, A.D., Aiden, E.L., 2018. The Juicebox Assembly Tools module facilitates de novo assembly of mammalian genomes with chromosome-length scaffolds for under $1000. bioRxiv 254797. https://doi.org/10.1101/254797.
Disclaimer
This is a work in progress. If you notice any discrepancies in the map or have data that confirms or contradicts the suggested reference, please email us at thednazoo@gmail.com or leave a comment on the Forum.