Hawaiian monk seal (Neomonarchus schauinslandi)

Unlike most seal species that reside in colder climates, the Hawaiian monk seal thrives in the tropical Hawaiian waters. Read more about Hawaiian monk seals on National Geographic's website.

Hawaiian Monk Seal on Kauai by the National Marine Sanctuaries, [CC BY 2.0], via flickr.com

Chromosome-length genome assembly

Download the EXP_REFINEFINAL1_bppAdjust_cmap_10X_BNG_fasta_NGScontigs_HYBRID_SCAFFOLD_NCBI_HiC.fasta.gz file containing the chromosome-length (2n=34) assembly of the Hawaiian monk seal genome. All modifications with respect to the draft (see below) are annotated in the EXP_REFINEFINAL1_bppAdjust_cmap_10X_BNG_fasta_NGScontigs_HYBRID_SCAFFOLD_NCBI_HiC.assembly file. Some basic stats associated with the new reference, EXP_REFINEFINAL1_bppAdjust_cmap_10X_BNG_fasta_NGScontigs_HYBRID_SCAFFOLD_NCBI_HiC, are listed below. The full data release can be explored here.

Draft

The chromosome-length genome assembly is based on the draft assembly EXP_REFINEFINAL1_bppAdjust_cmap_10X_BNG_fasta_NGScontigs_HYBRID_SCAFFOLD_NCBI, credited below.

Mohr, D.W., Naguib, A., Weisenfeld, N.I., Kumar, V., Shah, P., Church, D.M., Jaffe, D., Scott, A.F., 2017. Improved de novo Genome Assembly: Linked-Read Sequencing Combined with Optical Mapping Produce a High Quality Mammalian Genome at Relatively Low Cost. bioRxiv 128348. https://doi.org/10.1101/128348.

Method

3D Assembly was performed using 3D-DNA pipeline (Dudchenko et al., Science, 2017). The genome was reviewed using Juicebox Assembly Tools  (Dudchenko et al., bioRxiv, 2018). See Methods for more information.

Hi-C sample

The blood sample for in situ Hi-C preparation was donated by a male individual named Benny, and obtained from Michelle Barbieri (NOAA), Charles Littnan (NOAA), David Mohr (Johns Hopkins Medicine) and Alan Scott (Johns Hopkins Medicine).

Hi-C Contact maps

Hi-C data was aligned to the draft reference using Juicer (Durand, Shamim et al., Cell Systems, 2016), and contact maps visualizing the alignments with respect to the draft and the new reference were built using 3D-DNA (Dudchenko et al., Science, 2017). The contact maps can be explored below via Juicebox.js interactive tool (Robinson et al., Cell Systems, 2018). (Please note that the interactive figures are scaled 1:2.) To explore the assembly in greater detail, please download the .hic and .assembly files from the data release folder and use Juicebox Assembly Tools  (Dudchenko et al., bioRxiv, 2018).

References

If you use this genome assembly in your research, please check that the conditions of use associated with the draft permit it, and acknowledge the following work.

Mohr, D.W., Naguib, A., Weisenfeld, N.I., Kumar, V., Shah, P., Church, D.M., Jaffe, D., Scott, A.F., 2017. Improved de novo Genome Assembly: Linked-Read Sequencing Combined with Optical Mapping Produce a High Quality Mammalian Genome at Relatively Low Cost. bioRxiv 128348. https://doi.org/10.1101/128348.

Dudchenko, O., Batra, S.S., Omer, A.D., Nyquist, S.K., Hoeger, M., Durand, N.C., Shamim, M.S., Machol, I., Lander, E.S., Aiden, A.P., Aiden, E.L., 2017. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92–95. https://doi.org/10.1126/science.aal3327.

Dudchenko, O., Shamim, M.S., Batra, S., Durand, N.C., Musial, N.T., Mostofa, R., Pham, M., Hilaire, B.G.S., Yao, W., Stamenova, E., Hoeger, M., Nyquist, S.K., Korchina, V., Pletch, K., Flanagan, J.P., Tomaszewicz, A., McAloose, D., Estrada, C.P., Novak, B.J., Omer, A.D., Aiden, E.L., 2018. The Juicebox Assembly Tools module facilitates de novo assembly of mammalian genomes with chromosome-length scaffolds for under $1000. bioRxiv 254797. https://doi.org/10.1101/254797.

Disclaimer

This is a work in progress. If you notice any discrepancies in the map or have data that confirms or contradicts the suggested reference, please email us at theaidenlab@gmail.com or leave a comment on the Forum.

ARC-Logo-Final-2018-01.png

© 2018-2020 by the Aiden Lab.